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The search for a realistic superstring vacuum

By J.H.ScewaARrz
California Institute of Technology, Pasadena, California 91125, U.S.A.

Recent progress in understanding heterotic string compactification utilizes abstract
algebraic methods. In particular, Gepner has given a prescription for constructing
exactly soluble Calabi-Yau compactifications by using N = 2 minimal models. A
large class of new N = 2 models, discovered by Kazama & Suzuki, can also be used.
Recent progress in understanding N = 2 models and Calabi-Yau spaces by using
mathematical techniques of singularity theory improves the prospects of a complete
classification. A key question is whether a classical solution can give a reasonable first
approximation to the exact quantum ground state even though string theory is
strongly coupled and the perturbation expansion diverges.

INTRODUCTION

In the four years that have passed since string theory emerged as a popular approach to
unification we have learned a great deal about many facets of the programme (Green et al.
1987). Two general categories of issues have emerged as critical and received much scrutiny
in recent times. One is the quest for a genuine non-perturbative formulation of quantum string
theory. A very broad range of ideas and approaches have been put forward, but as yet none
has emerged as the consensus favourite. The second category of questions, which is the subject
of this review, concerns the search for classical solutions of the heterotic string theory, with
particular emphasis on those that are most promising for achieving phenomenological success.

Four years ago string theory was touted for its uniqueness. In a certain sense that is still a
viable point of view today. There are only three theories — type I, type II, and heterotic — that
appear to be internally consistent when analysed in perturbation theory. Each is completely
free of parameters or other arbitrariness. What has become clear in the intervening years is that
this uniqueness at the level of the fundamental equations (whatever they are) is not reflected
at the level of classical solutions. A bewildering proliferation of classical solutions have been
discovered by a variety of techniques. However, there is a unifying principle. Four dimensions
can be taken to be flat Minkowski space with the remaining degrees of freedom described by
an arbitrary conformal field theory having suitable central charges, supersymmetry and
modular invariance. All classical solutions that have been proposed, whether or not expressed
in these terms, can be interpreted as particular constructions of the internal conformal field
theory.

Unfortunately, at the level of perturbative analysis, this programme has some disturbing
arbitrariness. There is no compelling theoretical reason to separate off four-dimensional space-
time or to require that it be a Minkowski space. Moreover, the possibilities for the internal
conformal field theories are very numerous. The number can be reduced by imposing some
physical requirements such as N = 1 supersymmetry (to solve the hierarchy problem) or a
particular number of families.

One of the first proposals, Calabi-Yau compactification (Candelas ef al. 1985), still looks the

[41]
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360 J.- H SCHWARZ

most promising. From the abstract conformal field theory point of view it corresponds to a class
of (2,2) superconformal models with central charge ¢ = 9. The abstract approach treats related
orbifold compactifications as part of the same category. The detailed procedure for turning an
arbitrary (2, 2) superconformal model with ¢ = 9into an N = 1, D = 4 heterotic string solution
with E¢ families of quarks and leptons has been worked out by Gepner (19875).

Most of this review is concerned with the description of various techniques that have been
developed for constructing (2,2) superconformal models. Many examples, including the
minimal models considered by Gepner, can be constructed from Kac-Moody algebra cosets,
by using the method of Goddard et al. (1985). A supersymmetric extension of this method has
been formulated by Kazama & Suzuki (1988) and applied to the construction of many new
N = 2 superconformal models, which can also be used in the construction of the internal
¢ = 9 model.

Gepner gave convincing evidence that certain of his models correspond to known
Calabi-Yau compactifications. This seemed miraculous at the time, because his construction
is entirely algebraic and uses exactly soluble minimal models. Calabi-Yau spaces on the other
hand are very complicated geometric structures, none of which has a known metric. The
origins of this ‘miracle’ are much better understood now in view of recent developments
applying the mathematical techniques of singularity theory to the description of N = 2 models.

CONFORMAL FIELD THEORY

This section briefly reviews some of the central ideas in conformal field theory that are
required in the sequel. For more thorough and systematic discussions the reader is referred to
the review articles (Peskin 1987; Banks 1987; Ginsparg 1988).

It is extremely convenient to make a Wick rotation 7—ir so as to euclideanize the string
world-sheet and thereby make the metric 4,, positive definite. Having done this, we can
introduce complex coordinates (in local patches)

z=€"" and z=¢e" (1)
and regard the world sheet as a Riemann surface. The gauge invariances 7+ 0 - f, (1+0)
become conformal mappings z—Z(z) and similarly for z. Thus we are led to consider
conformally invariant two-dimensional field theory (Belavin ez al. 1984). These transformations
are generated by the energy-momentum tensor components 7(z) and T(Z).

For a conformal dimension # field we write - '

ba)=3 @

More generally, conformal fields are functions of z and z and thus have a pair of dimensions
(h, k). However, to simplify writing I will usually suppress Z dependences. If the ghosts are
included (so that the conformal anomaly cancels), T(z) has dimension (2,0) and 7(z) has
dimension (0, 2).

Under a finite transformation z— 2(z), a conformal dimension # field transforms as follows

B(2) > (02/32)"$ (2). (3)
[ 42 ]
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One sometimes says that ¢ is an ‘k-form’, because ¢(z) (dz)* is invariant. The infinitesimal
transformation is determined by the operator product expansion (opPE)

T(2) §(w) ~ he(w)/ (z—w)* +0B(w)/ (z—w) +.... (4)

The symbol 0 means differentiation with respect to w, of course. The dots represent non-
singular terms. The N = 1 superconformal algebra corresponds to the opEs

¢ 2T(w) 0T (w) )

2(z—w)* (z—w)2+ —w T

3 Gw) 0G(w)

- T(2) T(w) ~

T(2) 6w) ~ 5 it g+ (5)
G(2) G(w) ~3(22_‘w)3+2zT_(’:))+.... }

Thus G(z) has dimension (,0).

Particularly interesting examples of conformal fields are the two-dimensional currents
associated with a Lie group symmetry in a conformal field theory (Goddard & Olive 1986).
Using current conservation one can show that there is a holomorphic component J4(z) and
an antiholomorphic component J*(z), just as for 7 and G. As above, we consider J*(z) only.
The zero modes J; are the generators of a Lie algebra G with

[J55J5] = Ifupc J5.- (6)
The algebra of the currents J4(z) is an infinite-dimensional extension of this, known as an affine

Lie algebra or as a Kac-Moody algebra G. These currents have conformal dimension 4 = 1.
The Kac-Moody algebra is given by the opEs

B ko4% Ve J(w)

J4 ( ) JP (w) ~ Sz—w)? gt =, ot (7)
The parameter £ in the Kac-Moody algebra, called the ‘level’, is analogous to the
parameter ¢ in the conformal algebra. For a U(1) Kac-Moody algebra, U(1), it can be
absorbed in the normalization of the current. However, for a non-abelian group G, it has an
absolute meaning once the normalizations are carefully specified. Rather than giving general
formulas, let me simply state that I choose f,pc = €,5c in the case of SU(2). With this
normalization convention, the algebra admits unitary representations if and only if £ is a
positive integer. Unitarity is essential for us, because we will use such algebras to define the
positive-definite Hilbert space of physical states. An important formula, due to Sugawara
(1986) and Sommerfield (1986), gives the energy—momentum tensor associated with an

arbitrary Kac-Moody algebra: '

T6) = 5 EAF@L ®)

In the case of simply laced algebras (G = 4, D, E) the dual Coxeter number 4, equals c,,
where ¢, is the quadratic Casimir number of the adjoint representation deﬁned (with our
normalization convcntlons) by

JapcSapc = €ab4a- 9)

The associated central charge is ¢ = kdim G/ (k+kg). (10)

For example, in the case of §ﬁ(2) wh=2and ¢=3k/(k+2).
[ 43 ]
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An important restriction on the operator content of a conformal field theory is provided by
the requirement of modular invariance (Cardy 1986). Specifically, it is necessary that the
partition function

Z(7) = Z Ny s, Xn,(7) X5, (7) (11)
be invariant under the transformation group
7> (at+b)/(cT+d), (12)

where a, b, ¢, d are integers satisfying ad — b¢c = 1. This group is generated by the transformations
T:7>7+1 and S:7->—1/7. The coefficients N, ; in (11) are non-negative integers
representing the multiplicities of operators with conformal dimensions (k;,%,). The conformal
characters y, (1) are the trace of 2% in the module defined by the highest weight state
|h;) and its descendants. Clearly T invariance requires that the spins k;— &, be integers. Given
a chiral algebra, such as the Kac-Moody algebras, it is in general a difficult problem to find
all the possible modular invariant partition functions and to cla551fy the associated conformal
field theories. However, in the case of the Kac-Moody algebras SU( ). the problem has been
completely solved..

From the representation theory of SU( ) one knows that the possible dimensions of primary
fields are [ =0,},...,3k. Letting A =2/4+1 and N = 2(k+2), the characters are (Kac &

Peterson 1984) { ©
(1) = ) > (nN+Q)exp [inT(nN+A)?/N], (13)
where 7(7) is the Dedekind eta function
7(7) = exp (&mir) ¥ [—exp (2nint)]. (14)
n=1

Under an § transformation one has

Xa(=1/7) = /(ki2) 3 sin (:f;)xa (7).

By using the facts given above, the following theorem has been proved (Capelli ef al. 1987;
Gepner & Qiu 19874): modular-invariant SU(2) partition functions are in one-to-one
correspondence with simply laced Lie algebras. In each case £+ 2 is the Coxeter number of the

corresponding algebra. Moreover, the multiplicities of the diagonal terms are the Betti
numbers of the corresponding algebras. The partition functions are listed in table 1. Because
SU(2) enters in a crucial way in the construction of various other conformal field theories, this
result is directly relevant for them, as well.

TABLE 1. MODULAR-INVARIANT PARTITION FUNCTIONS FOR SU(2),
(Capelli ¢t al. 1987.)

k+1

Apn E lxal® k=21
2p-1

D2p+2 R 2 +X4p+2—A|2+2|sz+1|2 k=4p, p21
(ldd-
4p-1 2p-2

D, Z . |Xa|2+|X2p|2+ p R (Xa X:p—,\'*'c-c-) k=4p—2,p>2
Aodd™ cven'

E, X1+ Xa® + x4+ X6l* + x5 + x14* k=10

E, X1+ X1al® + x5+ X1al® + X7+ X02l + |X6l* + [(X3+ x15) X5 +c.c] k=16

E, X1+ X1l + [X10 + Xaol® + X7+ X13+ X1z + Xaal* k=28

[ 447]
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An important first step towards finding the general result for arbitrary Kac-Moody algebras
has been taken by Gepner (19874). He gives a complete list of modular-invariant partition
functions without the restriction N, 5 = 0. In the form given, it is a very non-trivial problem
to determine the subset that satisfies this restriction.

N =2 SUPERCONFORMAL SYMMETRY

By definition, an N-extended superconformal symmetry algebra is one containing N dimen-
sion-} fermionic generators G*(z);a = 1,2,..., N. It is also required that the opE G*(z) G¥(w)
contain the term 27(w)d*/(z—w), where T(w) is energy-momentum tensor. The N =2
algebra, in addition to 7,G',G? also contains a dimension-one current J(z); J can be
regarded as defining an abelian Kac-Moody algebra U/(1). The N = 2 superconformal algebra

is given by ¢ 2T(w) , 0T (w) )
T@) Tw) ~ gyt ot T o+

2 2T(w)\ qap , [ 2J(w) , OJ(w)
G“(z)Gﬂ(w)~(3(z_w)3+ z_w)a ﬂ+1((z w)2+z_w)e“ﬂ+...,

3 G*(w)  0G*(w)
~§(z—w)2+ z—w ten
Jw)  8J(w)
(z—w)2+ z—w
G (w)

2 ~ 1c2f
J(z) G*(w) ~ i€ —————z_w+...,

T(z) G*(w)

(15)

T(z) J(w) ~ +..,

1 ¢
J(z)J(w)~-§ ... J

(z—w)
The combinations G*(z) = (G'(z) +iG*(z))/+/2 are sometimes convenient to consider, as

G*(z) G*(w) and G™(z) G~ (w) are non-singular, whereas

2¢ 2J (w) +2 T(w) +0J (w)
3(z—w)®  (z—w)? z—w

G*(z) G~ (w) ~ +.... (16)

In the case of the N =1 superconformal algebra we distinguish two sectors, NS and R,
according to whether G(z) has half-integral or integral modes. In the case of the N = 2 algebra
there are three distinct sectors that can be distinguished (Boucher et al. 1986):

(1) the R sector in which all operators have integer modes;

(2) the NS sector in which G'(z) and G?*(z) have half-integral modes and 7'(z) and J(z) have
integral modes;

(8) -the T sector in which G'(z) and J(z) have half-integral modes and G*(z) and T'(z) have
integral modes. The T sector does not seem to play a role in applications to string theory.

When J(z) has integer modes, namely in the R and NS sectors, it has a zero mode J,,, which
is a U(1) charge. In these sectors, we can classify highest-weight states (and hence primary
fields) not only by the eigenvalue % of the operator L,, but also by the eigenvalue ¢ of J,. In
the twisted sector J(z) has no zero mode and hence there is no such charge to be defined.

To explicitly construct a large class of N =2 models it is convenient to consider super-

[45 ]
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Kac-Moody algebras. They contain dimension-} fermionic currents j4(z) as superpartners of
the usual dimension-1 bosonic currents J4(z). Because the j4(z) belong to the adjoint

representation, : C
J4(2) 75 (w) ~i%”l+.... (17)
They have free fermion commutation relations, so choosing a convenient normalization,
-A cB kaAB

The unitary representation of a super-Kac-Moody algebra with the lowest possible level is
given by setting the bosonic currents J“(z) equal to the fermion bilinears

Ji(2) = = (/B S*P57(2) (). | (19)

In this case it is easy to see that the conformal anomaly is just that of dim G free fermions
¢, = dim G, and the level of the Kac-Moody algebra is &, = ¢, (G).

By using this special representation, the general representation of a super-Kac-Moody
algebra can be obtained (Kac & Todorov 1985). Letting

J4(2) = J}(2) + J4(2), (20)
one sees that J4(z) defines a Kac-Moody algebra that is independent of the fermion fields. In
other words, J4(z)j%(w) and J4(z) JE(w) are non-singular. If we therefore consider a level £
representation of the algebra given by the J4(z), we obtain a representation of the J*(z)
algebra with level ) o ,
k=k+c,(G) =k+hg (21)
and central charge ¢g = kdim G/ (F+hg) +1dimG. (22)

The allowed values of £ are 0,1,2,..., where the choice F=0 implies setting J4=0. For
simplicity it is assumed that G is simply laced so that ¢,(G) = kg, where ¢,(G) is the Casimir
number defined in (9). The corresponding energy—-momentum tensor associated with the group

Gis
Ta(2) = (1/k) (: J4(2) J4(2): = :j4(2) 9 (2) ), (23)
and the supercurrent is

Go(2) = (2/k) (j*(2) J4(2) =3/ k) funcs* (2) 1°(2) S (2)). (24)

It is now easy to generalize the Gko construction (Goddard et al. 1985) to super-Kac—-Moody
algebras (Kazama & Suzuki 19884). Let J*(z),a = 1,...,dim H, denote the generators of H as
before. Then, just as for G, we can write

J2) = J*(2) = (i/ k) fure J* (2)F°(2), (25)

where f,,, are the H structure constants and j%(z) are dim H of the free fermions. The remaining
dim G —dim H free fermions are denoted j%(z). The H supercurrent is

Gu(z) = (2/k) (j°(2) J*(2) = 3(/K) fare J(2) °(2) J°(2)), (26)
and the coset model is defined by the difference
G(2) = Gg(2) = Gy(2) = (2/k) (j(2) J*(2) —3(i/ k) fause " (2) J*(2) /' (2))- (27)

[ 46 ]
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Just as in the ordinary ko construction, one can easily show that this has non-singular orEs
with the H currents J*(w) and j*(w). It is therefore guaranteed to define an N=1
superconformal theory with central charge ¢ = ¢;—c¢y, where

¢ = 3dim G— (kg /k) dim G | (28)

and similarly for ¢,. The corresponding energy—-momentum tensor is

U cara kana 2, supe 1 . 1
T = (I G+ R e ST = o o s e T ). (29

Let us examine the SU(2) case in more detail. In this case dim (G/H) = 2 and k = £+2, so

that ”
c=3k/(k+2), (30)

providing a derivation of the N = 2 minimal models. The index @ now takes the values 1 and
2, whereas the index a takes the value 3. Thus the equations for 7(z) and G(z) become

T= L)+ (T4 RS 1O 472 8) e

e

and | G = G = (2/k) G*TH +22). 32

The construction of the N = 2 representation is completed by the identifications

G*(2) = (2/k) G*T* =2 TY) (33)

and J = (2/k) J*+ (2ik/K?) 72 (34)
As a final check we can compute _

J(2) J(w) = 3¢/ (z2—w)?, (35)

with ¢ = 3/2/ (I; +2), as required. Not surprisingly, the modular-invariant partition functions of
the minimal models have the same ADE classification that we presented for SU(2) models.
We have seen that it is possible to associate unitary representations of the N =1
superconformal algebra with cosets by a generalized cko construction. We saw that the theory
admits a second supercurrent and thus furnishes an N = 2 model in the case of SU(2)/U(1),
corresponding to the N = 2 minimal models. A natural question is, What is the most general
choice of G/ H for which the N = 1 construction in fact defines an N = 2 algebra? This question
has been examined by Kazama & Suzuki (1988). They find that there is a second supercurrent

of the form . g a5 1y _—
G* = (2/k) (hg5)"J" —5(1/K) Sa5c 3 TF) (36)

provided that the following conditions are satisfied:

(i) hdF = —}15‘2 and hdﬁ }lijg = _865’

(i) hapSfo6e = hopSpae
(iii) fape = haphogSpac+2 perms,
(iv) Szge = haphoghor Spor-
Note that (i) implies that A is a complex structure for the coset manifold G/H.

To analyse the implications of these equations, let us define ¢, = kg5 f5, and consider X, =

25 [ 47 ] Vol. 329. A
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SodePer As foaz = 0, by the H group property, X,; = hz5 fa5e fax- The Jacobi identity allows us
to cycle the indices a,5,¢ on the fs. Also, using the antisymmetry of /g5, one obtains

Xpg = _2hd5j;EEf BdE = —2hg5 feaeSoar = "2kaz.fc¢5ﬁidu (37)

where the last step uses property (ii). Now interchanging the labels b and # we see that X, is
equal to its negative and hence vanishes. It therefore follows that ¢, can only be non-zero if ¢
corresponds to a U(1) factor in H. Thus we conclude that a necessary condition for N = 2
- superconformal symmetry is that / contain a U(1) factor.

Let us now consider the special case of a symmetric space (fz5; = 0). Manipulations similar
to those of the previous paragraph allow one to show that

Xcd =.f;?de ¢e =y kfd' (38)

For hermitian symmetric spaces there is just one U(1) factor. Let ¢ = 0 correspond to this U(1)
factor, so that the only non-zero component of ¢ is ¢,. Then we see that A,z oC f55,, with a
normalization determined by condition (i). Thus we are able to associate an N =2
superconformal model to every hermitian symmetric space. These were classified by Cartan
and are listed in the book of Helgason (1978). Table 2 lists the irreducible hermitian symmetric
spaces (for compact G) and the associated N = 2 central charges. There are several cases that
give the special value ¢ = 9 irreducibly.

TABLE 2. HERMITIAN SYMMETRIC SPACES AND THE ASSOCIATED N = 2 CENTRAL CHARGES
(Kazama & Suzuki 1988.)

G/H Con
SU(m+n)/SU(m) x SU(n) x U(1)  3kmn/(k+m+n)
SO(n+2)/SO(n) x SO(2) 3kn/(k+n)n>2
for n.=1,50(3)/SO(2) 3£/ (k+2)
SO(2r)/SU(n) x U(1) $hn(n—1)/ (k+2n—2)
Sp(n)/SU(n) x U(1) Y+ 1)/ (k+n+1)
E$/SO(10) x U(1) 48£/(F+12)
E,/E¢xU(1) 81£/(k+18)

(2,2) COMPACTIFICATION

Gepner (1987¢, 1988) has investigated superstring compactifications that give models with
(10 —2n)-dimensional Poincaré symmetry by describing internal degrees of freedom as a sum
of N =2 minimal models with

c=Y——=3n (39)

These constructions can be carried out both for type II superstrings and for heterotic strings.
In the latter case modular invariance of partition functions (and hence of loop amplitudes) can
be implemented by formulating an analogue of embedding the spin connection in the gauge
group. This involves using the same sum of minimal models for the left-movers. In the case of
four dimensions (n = 3), the remaining 22 —9 = 13 units of ¢, are contributed by the level-one
Kac-Moody algebra SO(10) ® E,. (At level one the central charge is equal to the rank of the
algebra.) The SO(10) symmetry actually becomes enlarged to Eg, so that one has Eg X Eg gauge
symmetry, as in the case of Calabi-Yau compactification. In general, there is some additional
‘accidental’ gauge symmetry as well.

[ 48 ]
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Gepner has explored two examples in considerable detail. The first example is based on five
copies of the £ = 3 model. (Note that each one has ¢ = §.) The second uses one copy of the
k = 1 model and three copies of the £ = 16 ; model (1+3-§ = 9). These are referred to succinctly
as 3% and 1-16%,. The subscript E means that the E, exceptional affine invariant is used in the
construction. He then gives overwhelming circumstantial evidence that these two models
correspond to known Calabi-Yau spaces. The evidence includes a count of the numbers of
generations and antigenerations as well as an analysis of the discrete symmetries.

One remarkable feature of Gepner’s results is that the minimal models are exactly soluble,
whereas Calabi—Yau spaces are very unwieldy in general. The construction is completely
algebraic, and so it is not understood how geometric structure arises. If one could write
a formula for the metric tensor or curvature tensor of the manifold in terms of the conformal
field theory, one would have solved a mathematical problem that is usually assumed to be
hopeless. Of course, this may not be possible. (Some insight into these matters will be provided
later.) The models have extra U(1) gauge symmetries beyond the expected E; @ Eg. There is
one associated with each contributing minimal model, but one gets used up in extending
SO(10) to Eg. Thus the number of U(1) factors is one less than the number of contributing
minimal models (four for 3® and three for 1-16%). In other examples the gauge symmetry can
be extended even further.

Thus the minimal model constructions correspond to Calabi-Yau compactifications at
special points of their moduli space where there is a large discrete symmetry group and
enhanced gauge symmetry. One wonders whether this makes them too special to be of much
interest, or whether these special features could make them physically preferred. Although it
is not yet known how to calculate such things, it seems conceivable that non-perturbative
effects could induce a potential that depends on the moduli in such a way that the theory would
‘roll’ to such special points. This would make them particularly good candidates for
phenomenology. But even if this is not so, their study still seems to be a useful exercise, because
they have so many realistic features. Also, many of these features only depend on the topology
of the space and not on the particular choice of moduli. Of course, one is not restricted to
minimal models only. If one were to use one of the Kazama-Suzuki models that gives ¢ =9
irreducibly, there would not be any extra ‘accidental’ gauge symmetry.

It is an interesting challenge to try to make a complete classification of (2, 2) superconformal
models with ¢ = 9. This is a formidable task, although it does not look as hopeless now, as it
did a few years ago. The first step is to examine what can be done with minimal models only.
The equation gk

= 1

c= i 9 | (40)
has 168 solutions, which have been enumerated (Lynker & Schimmrigk 1988). However, there
is additional freedom in choosing modular invariants of the contributing minimal models.
Allowing arbitrary combinations of A, D, and E invariants gives 1176 possibilities. The 228
that only use A and E invariants have been tabulated and the number of generations and anti-
generations of Eg multiplets has'been given in each case (Liitken & Ross 1988). There is some
redundancy, however, because the E¢ and E; minimal models are reducible, as explained later.
Many more models could also be formed by using the new N = 2 models and by modding out
by discrete symmetries. Most cases correspond to Calabi-Yau spaces, but some are orbifolds
(Eguchi et al. 1988). (There may even be examples with both interpretations!)
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Recently, there has been progress in evaluating the Yukawa couplings in these models
(Distler & Greene 1988). The (27)® coupling turns out to be given exactly by the lowest-order
(large radius) field theory approximation (Candelas et al. 1985), whereas the (27) is not. The
knowledge of these couplings should make it possible to evaluate mass ratios and other
quantities of physical interest. Then we can examine how close models of this type can come
to agreeing with experiment.

SINGULARITY THEORY CLASSIFICATION OF N =2 SUPERCONFORMAL MODELS

New insights into_the classification of (2,2) superconformal models have been obtained
recently (Vafa & Warner 1988 ; Martinec 1988) by using mathematical methods of singularity
theory (Arnold 1981) (also known as catastrophe theory). In particular, this work explains
how to construct the Calabi-Yau spaces corresponding to all Gepner-type compactifications
(Greene ¢t al. 1988). This subject is new and developing fast. We will settle here for a brief
description of some of the basic concepts.

Many interesting N = 2,d = 2 theories can be described by an action of the form

S= f d2xd*0K(D,, D)) + { f A2 d20W(D,) + c.c.}, (41)

In this expression the fields @, are chiral N = 2 superfields, meaning that they are annihilated
by certain supercovariant derivatives. In terms of physical states |®,) = @,|0), this means that
the NS sector descendants GZ|®,) are null. The superpotential I is a holomorphic function
of the @,. Because of the presence of the ‘F term’ (the one containing W), these systems can
be regarded as N = 2 Landau-Ginsburg models.

The main idea is to study the renormalization group flow under scale transformations of the
two-dimensional metric g— A%g as A - c0. The kinetic term (known as the ‘D term’) contains
only irrelevant operators, and thus W determines the fixed point of the RG flow. Specifically,
at a fixed point the chiral fields scale according to

P> AP, }
WD) = AW(D,).

(42)

In this case, one says that W is quasi-homogeneous with weights w,. The fixed point describes
a conformally invariant model in which the conformal dimensions of @, are (&, k,) = (3v,,30,).
The main result is that a quasi-homogeneous function W uniquely characterizes an N =2
superconformal model up to field redefinitions (with a finite non-zero jacobian) and the
addition of trivial quadratic terms in new fields. The analysis requires that @" have a
dimension n times that of @, which is valid as a consequence of the N = 2 algebra. By studying
the scaling of the partition function, and comparing with the Weyl anomaly formula (Polyakov
1981), one can show that the central charge is ¢ = 68, where

‘ = 1_
is called the ‘singularity index’ of W. A=2G-w) 43)
An important notion in singularity theory is ‘modality’. Roughly speaking, this is the
number of parameters that characterize the model. It is not quite the same thing as the number
of physical moduli. Remarkably, the classification of modality m = O singularities precisely
corresponds to the N = 2 minimal models! The same ADE classification discussed earlier was

[50]


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A REALISTIC SUPERSTRING VACUUM 369

known previously in singularity theory, because there is a prescription for associating Dynkin-
like diagrams to singularity types. The m = 0 classification is

A, 1t k=n—1, )

D,: «"'+xy® k=2n—4,

Eg: 44t k = 10, * (44)
E,;: 24x° k=16,

Eg: 2440 k=28 |

An obvious problem is to find the superpotentials that correspond to the various
Kazama—Suzuki models.
The power of this approach is illustrated by the fact that there are three reducible minimial

models, which are readily identified. Namely, as A,, ® A, corresponds to x™*!+ y"*1,
D,=A,®A,,
E¢= A, ® A, (45)
Es=A,®@A,

-The first of the correspondences is proved by noting that a linear change of variables allows
x® + xy® to be expressed as the sum of two cubes. The discrete symmetries of the minimal models
are also readily understood. For example, the Z,,, symmetry of the A,,, model is generated
by x—exp [2ni/(k+2)] «.

Each of Gepner’s models is characterized by a superpotential given by the appropriate sum
of polynomials. For example, the 3° model corresponds to five A, models: W = 3}, &;. The
corresponding Calabi-Yau space is given by the hypersurface W =0 in CP*. This fact is
‘derived (Greene et al. 1988) by making an appropriate change of variables in the path integral

quﬁl...ddis exp {i Idzxd%W(@i)}. ' (46)
Only some of Gepner’s models correspond to the fully classified complete-intersection
Calabi-Yau (cicy) spaces given by polynomial constraints in products of complex projective
spaces (Candelas et al. 19884, ). The appropriate generalization that accommodates all of
Gepner’s models, suggested by the structure of quasi-homogeneous functions, involves
‘weighted projective spaces’. The space WCP,‘:" ...ky,, 15 defined by the identification [z, ...,
Zy] ~ [Afizy, ..., A¥¥+1zy 1. One subtlety is that these have non-trivial fixed-point sets.
Remarkably, the condition for the vanishing of the first Chern class is simply that ¢ = 9.

CONCLUDING REMARKS

It was argued several years ago that string theory is a ‘strongly coupled’ theory (Dine &
Seiberg 1985; Kaplanovsky 1985), meaning that (non-perturbative) quantum effects would
be important. This could cause one to worry that the study of classical ground states is a waste
of time, but I think that would be an overreaction. The three-generation models clearly come
quite close to giving the desired phenomenology; it would be foolish not to explore how far they
can be pushed. Many realistic features emerge quite naturally: gravity, popular gauge groups
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and representations, chiral families of fermions, axions, symmetry-breaking mechanisms,
supersymmetry, etc. (I do not understand how those who say ‘There is not a shred of
experiméntal evidence for string theory’ can ignore all these successes.) It would be a very
strange coincidence if classical solutions were completely off the mark.

Certainly, non-perturbative phenomena will be crucial for a complete understanding. It is
quite clear that the N = 1, D = 4 supersymmetry of the Calabi-Yau or orbifold solutions is not
broken at any order in perturbation theory. Also, the dilaton and other massless states do not
acquire a mass. I think it is reasonable to expect these things to happen in the complete non-
perturbative quantum theory, however. An encouraging result is the recent demonstration that
the string perturbation expansion diverges (Gross & Periwal 1988). This suggests that not every
classical solution need correspond to a quantum ground state, but that whenever one does the
needed symmetry breaking and mass generation could occur. Also, there probably are
instantons that give quantum tunnelling between different classical vacua. These types of
effects might lift the enormous degeneracy with which we are currently faced.

One question that has received much attention in recent years is why the cosmological
constant is so small (less than 107'*° in Planck units). I don’t know the answer, but let me offer
the following comments. Perhaps, as we have discussed, the correct string theory ground state
is reasonably approximated by a classical solution with N =1 supersymmetry in four
dimensions. Because supersymmetry is unbroken at every order in the loop expansion, the
cosmological constant undoubtedly vanishes at every order. The mystery that then needs to be
understood is why the non-perturbative effects that break supersymmetry do not generate a
cosmological constant at the same time. It seems to me that the problem must be addressed in
the context of the complete theory and is very unlikely to be resolved by considerations that
are not sensitive to Planck-scale physics. I have assumed that low-energy supersymmetry is
required to solve the ‘hierarchy problem’. This was the principle motivation for looking for
supersymmetric solutions, although they do seem to fit in rather naturally. Still, it would be
very reassuring and helpful to have supporting experimental evidence. Could a ‘string miracle”
other than space-time supersymmetry do the job? After all, we need one to eliminate the
cosmological constant.

In conclusion, it would probably be foolhardy to predict dramatic phenomenological
successes for string theory in the near term. Still, there are some encouraging possibilities that
deserve to be pursued. We might get lucky!

"I am grateful to L. Dixon, D. Gepner, W. Lerche, E. Raiten and G. Rivlis for helpful
discussions. This work was supported in part by the U.S. Department of Energy under

Contract no. DE-AC0381-ER40050.
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Discussion

J. R. Eruis, F.R.S. (Theory Division, CERN, Geneva, Switzerland). Professor Schwarz has discussed
extensively (2,2) compactifications. As he knows, more general compactifications are
compatible with N = 1 space-time supersymmetry. Have any advances been made recently in
the classification of such (2,1) and (2,0) compactifications?

J. H. Scawarz. As Dr Ellis probably knows, (2,0) and (2,1) models have been discussed in
recent papers by Dine & Seiberg (1985), Distler & Greene (1988), and Cvetic. I am not an
expert in these matters, but I am not aware of any recent advances indicating whether such
schemes could be realistic.

[ 53]


http://rsta.royalsocietypublishing.org/

